Reduction Stability and Iterate Decomposition Stability

Trevor Hyde

University of Michigan

July 25, 2016

$f^{n}(x)=u(y)$

- Let $K=\bar{K}, \operatorname{char}(K)=0$.
- Let f, u be non-constant rational functions defined over K with $\operatorname{deg} f \geq 2$.

$$
C_{n}: f^{n}(x)=u(y)
$$

- C_{n} arise in the study of the dynamical Mordell-Lang problem.
- Is C_{n} irreducible? What can we say about the components of C_{n} ?
- For each n we have a finite map

$$
\begin{aligned}
C_{n+1} & \rightarrow C_{n} \\
(x, y) & \mapsto(f(x), y)
\end{aligned}
$$

- $u_{n}: C_{n} \rightarrow \mathbb{P}^{1}$ defined by $u_{n}(x, y)=x$.
- Total degree of the projection u_{n} is $\operatorname{deg} u$.
- Restricting u_{n} to irreducible components gives a partition of $\operatorname{deg} u$.
- Hence the branching must eventually stabilize.

Question

- How long does it take for the C_{n} to stabilize?
- Can we have a situation like this for large n ?

Reduction Stability and Iterate Decomposition Stability

Theorem (H, Zieve) Let $K=\bar{K}, \operatorname{char}(K)=0$. Suppose f, u are non-constant rational functions defined over K such that $\operatorname{deg} f \geq 2$.

- (RS) There exists a constant $b=b(\operatorname{deg} u)$ such that if $C_{b}: f^{b}(x)=u(y)$ is irreducible, then C_{n} is irreducible for all $n \geq 0$.
- (RS') There exists a constant $b^{\prime}=b^{\prime}(\operatorname{deg} u)$ such that for all $n \geq b^{\prime}$, C_{n} has the same number of irreducible components as $C_{b^{\prime}}$.
- (IDS) There exists a constant $b^{\prime \prime}=b^{\prime \prime}(\operatorname{deg} u)$ such that if $f^{n}=u \circ v$ for some $n \geq 1$ and rational function v, then $f^{b^{\prime \prime}}=u \circ w$ for some rational function w.

RS' follows from RS by induction.

$\mathrm{RS} \Rightarrow \mathrm{IDS}$

- $f^{n}=u \circ v$ iff $C_{n}: f^{n}(x)=u(y)$ has a genus 0 component of the form $y=v(x)$ iff C_{n} has a component D for which the x-coordinate projection $u_{n}: D \rightarrow \mathbb{P}^{1}$ has degree 1 .
- RS' provides b^{\prime} so that $C_{b^{\prime}}: f^{b^{\prime}}(x)=u(y)$ must have genus 0 component for which the x-coordinate projection has degree 1 .

IDS \Rightarrow RS

Theorem (Fried) Let g, h be non-constant rational functions defined over a field K. If $g(x)=h(y)$ is reducible, then we have

$$
\begin{aligned}
& g=g_{0} \circ g_{1} \\
& h=h_{0} \circ h_{1}
\end{aligned}
$$

such that g_{0}, h_{0} have the same Galois closure and $g_{0}(x)=h_{0}(y)$ is reducible.

- Suppose $C_{n}: f^{n}(x)=u(y)$ were reducible. Let $u=u_{0} \circ u_{1}$ and $f^{n}=f_{0} \circ f_{1}$ be the decompositions given by Fried's theorem.
- u_{0} and f_{0} having same Galois closure implies $\operatorname{deg} f_{0} \leq \operatorname{deg} u_{0}!\leq \operatorname{deg} u!$.
- IDS provides $b^{\prime \prime}$ so that $f^{b^{\prime \prime}}=f_{0} \circ f_{2}$ for some f_{2}.
- Then $f_{0}(x)=u_{0}(y)$ reducible implies
$C_{b^{\prime \prime}}: f^{b^{\prime \prime}}(x)=f_{0}\left(f_{2}(x)\right)=u_{0}\left(u_{1}(y)\right)=u(y)$ reducible.

RS Proof Outline

- Using Fried's theorem we reduce to the case where $C_{b}: f^{b}(x)=u(y)$ is irreducible of genus 0 .
- Riemann-Hurwitz argument to show that if $b \geq \log ((2+1 / 42) \operatorname{deg} u) / \log (2)$, then the x-projections $u_{i}: C_{i} \rightarrow \mathbb{P}^{1}$ have Galois closure of genus at most 1 for $i \leq b / 2$ and $\#\left\{p: p\right.$ is a critical value of u_{i} for some $\left.i \leq b / 2\right\} \leq 4$.
- Rational functions $u(y)$ with Galois closure of genus at most 1 can be classified up to change of coordinates.

RS Proof Outline

- $u(y)$ is, after a change of coordinates, either $y^{m}, y^{m}+y^{-m}, \pm T_{m}(y)$, or one of finitely many functions with Galois group A_{4}, S_{4}, or A_{5}; or comes from an isogeny of elliptic curves (for example, Lattès maps.)
- In each case, knowing the ramification of u and assuming C_{b} is irreducible of genus 0 , $\mathrm{R}-\mathrm{H}$ limits the possible ramification of f over the critical values of u.
- If b is sufficiently large, the ramification of f is constrained enough that we can classify all possibilities.
- But then we conclude in each case that C_{n} is always irreducible.

Reduction Stability and Iterate Decomposition Stability

Theorem (H, Zieve) Let B, C be projective curves defined over an algebraically closed field K of characteristic 0 . Suppose

$$
\begin{aligned}
& u: C \rightarrow B \\
& f: B \rightarrow B
\end{aligned}
$$

are finite morphisms defined over K such that $\operatorname{deg} f \geq 2$.

- (RS) There exists a constant $b=b(\operatorname{deg} u)$ such that if the fiber product C_{b} of f^{b} and u is irreducible, then C_{n} is irreducible for all $n \geq 0$.
- (RS') There exists a constant $b^{\prime}=b^{\prime}(\operatorname{deg} u)$ such that for all $n \geq b^{\prime}$, the fiber product C_{n} of f^{n} and u has the same number of irreducible components as $C_{b^{\prime}}$.
- (IDS) There exists a constant $b^{\prime \prime}=b^{\prime \prime}(\operatorname{deg} u)$ such that if $f^{n}=u \circ v$ for some $n \geq 1$ and $v: B \rightarrow C$, then $f^{b^{\prime \prime}}=u \circ w$ for some $w: B \rightarrow C$.

Thank you!

These slides may be found on my website: www-personal.umich.edu/~tghyde/

